On advertisement call of the poison frog *Ameerega berohoka* (Dendrobatidae, Anura) from the Brazilian Cerrado

FELIPE SILVA DE ANDRADE, ISABELLE AQUEMI HAGA, FABIO AUGUSTO MIGUEL MARTINS & AROIVALDO ANTONIO GIARETTA

1 Laboratório de Taxonomia, Ecologia Comportamental e Sistemática de Anuros (Lissamphibia) Neotropicais, Universidade Federal de Uberlândia, Faculdade de Ciências Integradas do Pontal, Rua 20, nº 1600, Bairro Tupã, 38.304-402. Ituiutaba, MG, Brazil

2 Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas. Rua Monteiro Lobato, 255. Cidade Universitária, 13083-970. Campinas, SP, Brazil

3 Corresponding author. Email: felipe_andrade@ymail.com

The poison frog genus *Ameerega* (Dendrobatidae) currently contains 32 species. They are distributed from central Brazil into western Amazonia to the lower Andean versant. In addition, three trans-Andean species have been allocated to *Ameerega* (Andrade et al. 2013; Frost 2014). *Ameerega berohoka* (Vaz-Silva & Maciel 2011) was described based on specimens from central Brazil (type-locality: Arenópolis, GO) and it is assumed to occur in parts of western and southwestern state of Goiás (Frost 2014). More recently, Andrade et al. (2013) extended its distribution to the state of Mato Grosso. Here we re-describe the advertisement call of *A. berohoka*, providing additional information regarding its temporal structure and spectral traits. Our observations also consist of a new distribution record for this species to the state of Mato Grosso.

Field work was conducted on 16–17 November 2012 at the Parque Estadual Serra Azul (PESA), municipality of Barra do Garças (15.850767 S, 52.270808 W, approximately 533 m a.s.l.), state of Mato Grosso, Brazil. Recordings were made between 07:27–08:05 hrs. The most representative habitats in PESA are cerrado rupestre (hill savanna on rocky soil), cerrado *sensu stricto*, gallery forest and semi-deciduous forest (Sanchez & Pedroni 2011). The average annual rainfall in PESA is 1528 mm and the average temperature 25.5 °C (Pirani et al. 2009). One recorded male is deposited at Museu de Biodiversidade do Cerrado, Universidade Federal de Uberlândia, municipality of Uberlândia, state of Minas Gerais, Brazil (AAG-UFU 1310).

TABLE 1. Advertisement call variables of *Ameerega berohoka* from the Parque Estadual Serra Azul (PESA), municipality of Barra do Garças, State of Mato Grosso, Brazil. Mean±SD (minimum-maximum). N = number recorded males; fifty analyzed calls/male.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Ameerega berohoka N=5 (250)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call duration (s)</td>
<td>0.119±0.012 (0.090–0.173)</td>
</tr>
<tr>
<td>Intercall interval (s)</td>
<td>0.319±0.060 (0.140–0.695)</td>
</tr>
<tr>
<td>Calls/minute</td>
<td>144.02±21.55 (124.38–179.00)</td>
</tr>
<tr>
<td>Calls/second</td>
<td>2.60±0.55 (2.0–3.0)</td>
</tr>
<tr>
<td>Peak of dominant frequency (Hz)*</td>
<td>4118.2±63.7 (3919.0–4478.9)</td>
</tr>
<tr>
<td>Min. dominant frequency (Hz)*</td>
<td>2763.3±93.3 (2496.1–3092.9)</td>
</tr>
<tr>
<td>Max. dominant frequency (Hz)*</td>
<td>5056.5±158.7 (4618.3–5586.2)</td>
</tr>
<tr>
<td>Peak of fundamental frequency (Hz)</td>
<td>2165.4±135.3 (1921.9–2484.4)</td>
</tr>
<tr>
<td>Peak of 3rd harmonic frequency (Hz)</td>
<td>6165.3±114.4 (5625.0–6468.8)</td>
</tr>
<tr>
<td>Air temperature (°C)</td>
<td>25–26</td>
</tr>
</tbody>
</table>

* = 2nd harmonic
Call terminology followed Duellman and Trueb (1994) and McLister et al. (1995). Two hundred and fifty advertisement calls of five males were analyzed (50 calls/male). Pooled means and standard deviations were calculated considering mean values of individual males. Calls were recorded with a Marantz PMD 671, a Boss 864 (both coupled to Sennheiser ME67/K6 microphones) and a M-audio Microtrack II (Sennheiser ME66/K6) digital recorders. Air temperature was obtained for each recorded male. The recorders were set at 44.1 or 48.0 kHz and 16-bit resolution. Calls were analyzed using Raven Pro 1.5, 64-bit version (Bioacoustics Research Program 2012) with the following settings: window type = Hanning, window size = 256 samples, 3 dB filter bandwidth = 248 or 270 Hz, brightness = 50%, contrast = 50%, overlap = 85% (locked), DFT size = 1024 samples (locked), and a grid spacing (spectral resolution) = 43.1 or 46.9 Hz. Temporal variables were analyzed in oscillograms and spectral variables in spectrograms. Dominant frequency and other frequencies were assessed through the ‘Peak Frequency’ function. Energy peaks are referred here as: 1) fundamental, 2) dominant (2nd harmonic) and 3) 3rd harmonic. Figures were generated using Seewave v.1.6 package (Sueur et al. 2008) on the R platform (version 3.0.2; R Development Core Team 2013). Seewave settings were as follows: Hanning window, 85% overlap, and 512 points resolution (FFT). Original analyzed calls (in wav format) are available at AmphibiaWeb (http://amphibiaweb.org/).

Values for quantitative variables of the advertisement call are detailed in Table 1 and spectrograms and oscillograms are depicted in Figure 1 (A–B). The advertisement call consists of an amplitude modulated (max. 50%) non-pulsed note with a discrete ascending frequency modulation throughout its duration. To the human ear, the call resembles a pure short-whistle and in the last 1/8th of each call, the sound intensity abruptly decreased. The calls of this species last 90–173 ms, are separated by intervals of 140–695 ms, and released at a rate of 125–179 calls/minute. Each note possesses up to six harmonics. Dominant frequency varies around 3919–4479 Hz and coincides with the second harmonic. The fundamental frequency range is around 1922–2484 Hz and the air temperature varied from 25 to 26°C.

TABLE 2. Spectral variables of the advertisement calls of three species of the *Ameerega picta* group from the Brazilian Cerrado. Mean ± SD (minimum-maximum). N = number of recorded males (number of analyzed calls).

<table>
<thead>
<tr>
<th>Spectral Variables</th>
<th>A. berohoka</th>
<th>A. braccata</th>
<th>A. flavopicta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=5 (250)</td>
<td>N=1(10)</td>
<td>N=3(30)</td>
</tr>
<tr>
<td>Min. dominant frequency (Hz)*</td>
<td>2763.3±93.3 (2496.1–3092.9)</td>
<td>3129.5±93.2 (3017.2–3232.1)</td>
<td>2373.6±74.1 (2187.8–2579.6)</td>
</tr>
<tr>
<td>Max. dominant frequency (Hz)*</td>
<td>5056.5±158.7 (4618.3–5586.2)</td>
<td>4384.4±31.0 (4347.9–4438.5)</td>
<td>4187.5±31.0 (3979.3–4346.4)</td>
</tr>
<tr>
<td>Peak of dominant frequency (Hz)*</td>
<td>4118.2±63.7 (3919.0–4478.9)</td>
<td>3843.8±0.0 (3843.8–3843.8)</td>
<td>3288.1±50.3 (3186.9–3359.2)</td>
</tr>
<tr>
<td>Peak of fundamental frequency (Hz)</td>
<td>2165.4±135.3 (1921.9–2484.4)</td>
<td>1893.8±24.2 (1875.0–1921.9)</td>
<td>1660.2±50.2 (1550.4–1765.7)</td>
</tr>
<tr>
<td>Peak of 3rd harmonic frequency (Hz)</td>
<td>6165.3±114.4 (5625.0–6468.8)</td>
<td>5695.3±74.1 (5625.0–5812.5)</td>
<td>4980.6±141.6 (4651.2–5254.1)</td>
</tr>
</tbody>
</table>

* = 2nd harmonic

For comparative purposes, we also present data on the advertisement calls of two other *Ameerega* species known to occur in the Brazilian Cerrado (Table 2 and Figure 1C–E; recordings also available on AmphibiaWeb). The location of advertisement calls and species are as follows: 1) *A. braccata* from Santo Antonio de Leverger (15.652611 S, 56.053442 W; see Forti et al. 2010 for a full description of the call); and 2) *A. flavopicta* from Santana do Riacho (19.300914 S, 43.601081 W; see details in Magrini et al. 2010).

Some characters of the advertisement call of *A. berohoka* were described in the initial description of this species, but were based on a poor quality (low amplitude) recording of a single male. Our analyses of several individuals provide additional information on the existence of harmonic structure and frequency modulation. Vaz-Silva and Maciel (2011) reported that the call consists of a single 10-pulsed note. However, we found that amplitude modulation is weak and not cyclic (Watkins 1968; Elemans et al. 2008). These results suggest that the call of *A. berohoka* is better defined as non-pulsed (see Fig. 1 B). *Ameerega berohoka* call is distinguished from that of *A. flavopicta* by being non-pulsed (Magrini et al. 2010) and that of *A. braccata* by being longer and by
having a slightly higher dominant frequency (see Table 2 and Figure 1 C and E). Our data on number of note types, note duration and frequency range of the dominant frequency are in accordance with Vaz-Silva and Maciel (2011).

Regarding the other species of the *A. picta* species group, *A. berohoka* is distinguished from *A. boehmei* by having a higher fundamental frequency (1.16–1.63 kHz in *A. boehmei*) and a higher call rate (1.28–1.97 calls/s in *A. boehmei*) (Lötters et al. 2009). The length of call of *Ameerega berohoka* (90–173 ms) is much longer than *A. picta* (50 ms), *A. altamonzonica* (60–80 ms) and *A. hahneli* (11–18 ms) (Schlüter 1980; Morales 1992; Haddad & Martins 1994; De La Riva et al. 1996; Köhler & Lötters 1999; Twomey & Brown 2008). This species also differs from *A. hahneli* by having a lower pulse rate (5–9 calls/s in *A. hahneli*) (Schlüter 1980; Morales 1992; Haddad and Martins 1994; De La Riva et al. 1996; Köhler and Lötters 1999).

The occurrence of high frequency and harmonically-related acoustic bands have been neglected in many *Ameerega* call descriptions (Haddad & Martins 1994; Toledo et al. 2004; Costa et al. 2006; Magrini et al. 2010; Forti et al. 2010; Martins & Giarretta 2012). In our comparative analyses (Table 2), the fundamental frequency is always discernible, but weaker than the dominant (2nd harmonic). The presence of different harmonic bands in frog calls may be related to features such as sexual selection (Gridi-Papp et al. 2006) and to environs with different background noises (Lima & Eterovick 2013).

Recently, Andrade et al. (2013) expanded the known distribution of *A. berohoka* for the state of Mato Grosso (Itiquira), this record refers to the westernmost known locality for the species and the only one outside the Araguaia River basin. Our new record represents the northernmost (about 90 km northwest to its type locality) locality for the species.

Acknowledgements

Financial supports by CNPq and FAPEMIG. A grant by CNPq to AAG. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided grants to FSA and IAH. Specific financial support for works at Serra Azul by MCT/CNPq/MMA/MEC/CAPES/FNDCT (Açâo Transversal/FAPS Nº 47/2010; Processo CNPq 563134/2010-0). Collection permit: ICMBio 30059-5. Special thanks go to Thiago R. Carvalho kindly made available the recording of *A. braccata* and critically read the draft, Jason L. Brown and two anonymous reviewers for making helpful comments and suggestions on the manuscript. We are grateful to F. Pedroni and M. Sanchez for providing facilities in Barra do Garças.

References

http://dx.doi.org/10.1590/s1676-06032006000100006

http://dx.doi.org/10.1080/00222939600771311

http://dx.doi.org/10.1080/09524622.2008.9753599

http://dx.doi.org/10.1590/s1519-69842010000100029

http://dx.doi.org/10.1670/11-218

http://dx.doi.org/10.1080/01650521.2010.494025

http://dx.doi.org/10.1590/s0102-33062009000400019

http://dx.doi.org/10.1080/09524622.2008.9753600

http://dx.doi.org/10.11606/issn.2316-9079.v3i2p145-147

Appendix 1

Sound files (wav) of analyzed calls. All archives deposited in AAG’s acoustic collection and are also available at AmphibiaWeb (http://amphibiaweb.org/).

· AB_BG1:Ameerega_berohokabarragarcasMT1aAH_AAGmt.wav
· AB_BG2:Ameerega_berohokabarragarcasMT2aFSA_AAGb.wav
· AB_BG3:Ameerega_berohokabarragarcasMT3aFSA_AAGb.wav
· AB_BG4:Ameerega_berohokabarragarcasMT4aAAGm671.wav
· AB_BG4:Ameerega_berohokabarragarcasMT4bAAGm671.wav
· AB_BG5:Ameerega_berohokabarragarcasMT5aAAGm671.wav
· AB_MT:Ameerega_braccatasvicentemt1aTRC_AAGmt.wav
· AF_MG1: Ameerega_flavopCipoMG1bAAGb.wav
· AF_MG2: Ameerega_flavopCipoMG2aAAGb.wav
· AF_MG3: Ameerega_flavopCipoMG3aAAGb.wav